LogoLogo
  • Documentation Pages
  • About Minor Makers Lab
  • Documentation templates
    • Recipe template
    • Label templates
    • Ingredient template
  • Projects
    • Project overview
      • Gelance Cushion - Andrei Motian
      • Landscapes for Warhammer - Dusanka Prvulovic
      • Bioplastic Filters: An Analogue Photoshop - DaniĆ«l van Kesteren
      • Hyperdisposables - Anoush Mazloumian
      • Project Stop Touching - Summer Danoe
      • Foam For Material Activists - Laura Velgersdijk
      • DateKleed - Duncan van Norden
      • One Size Hurts All - Kaz Bison
      • Biodegradable Packaging Bags - Kim Sinke
      • DIY Faceguards - Thijs Uffen
      • Bioplastics on a Rainbow Spectrum - Desiree van Dam
      • Beyond Humanity - Britt de Heer
  • Coursework
    • Britt
      • research zine text
      • Week 11
      • Week 12 / 13
      • Week 14
      • 1 ) Kick-Off
        • Grafische Werkplaats Amsterdam
        • Safetyzine
      • 2 ) Electronics: Connecting Materials
      • 4 ) Cutting Supersurfaces
        • Zine: Art Approach
        • Furry Sample Book
      • 5 ) Additive Manufacturing
      • 6 ) Untoolkit: Electronic Inputs
      • 7 ) Transforming: Moulding and Casting with Bioplastics
      • 8 ) Untoolkit: Electronic Outputs
    • Andrei
      • Week 1
        • GWA
        • Textielmuseum
        • Safetyzine
      • Week 2
        • Ohm's Law & circuits
        • Speaker on denim
      • Week 4
        • Inflatables 2D to 3D
        • Smooth to sharp with polypropylene
      • Week 5
        • Making a switch for the laser cutter in Fusion360
        • Designing and 3D printing molds
      • Week 6
        • Wearable switch for sound
        • Analog Sensor
      • Week 7
        • Home materials
        • Making bioplastics
        • Material properties
      • Week 8
        • Virtual Swatch
        • Processing
        • RGB LED
      • Project weeks 11 - ?
        • Week 11: Kick-off
          • Brainstorm Session
          • 5 min pitch
          • Trail of Evidence
          • Proposal
        • Week 12: Experimenting
          • Research workout materials
          • First Experiment
          • Trail of Evidence
        • Week 13: Project Work
          • Insights
          • Reframing session with Laura
          • Trail of Evidence
        • Week 14: Reframing
          • Reflective design method
          • Going bigger
          • Trail of Evidence
        • Week 15
          • Highlights photo's
          • Reframing, research & insights
          • Trail of Evidence
        • Week 16
          • Going even bigger
          • Trail of Evidence
        • Week 17
          • Trail of Evidence
        • Project
    • Anoush
      • Week 11-19
        • Week 11 | project kick-off
        • Week 14 | First experiments
        • Week 15 | Progress presentation
        • Last reframing session
        • Trail of Evidence
      • Week 1-8
        • Overall Reflection
        • Week 8 | Untoolkit - Electronic Outputs
        • Week 7 | Transforming bioplastics
        • Week 6 | Untoolkit - Electronic inputs
        • Week 5 | Additive Manufacturing
        • Week 4 | Cutting Supersurfaces
        • Week 3 | Reading Week
        • Week 2 | Electronics: Connecting Materials
        • Week 1 | Kick-off
    • DaniĆ«l
      • Week 20: Expo Week
      • Week 19: Project Week 9
      • Week 18: Project Week 8
      • Week 17: Project Week 7
      • Week 1: Kick-Off
      • Week 2: Electronics and Connecting Materials
        • Part I: The Basics and Recreating Circuits
        • Part II: The Making of the Speaker
        • Part III: Testing the speaker
      • Week 3: Reading Week
      • Week 4: Processes & Collaboration
        • Part I: exploring the words
        • Part II: experimenting with the laser cutter
      • Week 5: Critical Making 3D
        • Part I: Creating the injection mold
        • Part II: Creating the two-part mold
        • Part III: Printing the designs
      • Week 6: Electronics & Open Design
      • Week 7: Bioplastics
        • Material Properties Sheet
        • The Ma2E4 Toolkit
        • The Ma2E4 Toolkit (second bioplastic)
        • An application for the bioplastic
      • Week 8: Interfaces & Algorithmic Bias
      • Week 9: Documentation Week
      • Week 10: Assessments
      • Week 11: Project Kick-Off
      • Week 12: Recess
      • Week 13: Project Week 2
      • Week 14: Project Week 3
      • Week 15: Project Week 4
      • Week 16: Project Week 5
        • Presentation Preparation
    • Desiree
      • Summaries
      • Kick-off
      • Week 1 - Safety Zine
      • Week 2-3 Electromagnets
      • Week 4 - Cutting Supersurfaces
      • Week 5 - Additive Manufacturing
      • Week 6 - Untoolkit: Electronic Inputs
      • Week 7 - Transforming: Molding and Casting with Bioplastics
      • Week 8 - Untoolkit: Electronic Outputs
      • Trail of Evidence
      • Website
      • Material Archive
      • Week 11 - Choose a project
      • Week 12 - 13
      • Week 14
      • Week 15
      • Week 16
      • Week 17
      • Week 18
      • Week 19
    • Duncan
      • Week 1: Kick-Off
        • Masterclass Studio Overvelde
        • Workshop letterpress
        • Textielmuseum Tilburg
        • Meet the Makers - introduce yourself
        • Safetyzine
        • extraĀ“s
      • Week 2: Electronics: Connecting Materials
        • Zine: Kits & Open sources
      • Week 3: Reading week
      • Week 4: Cutting Supersurfaces
        • Zine:
      • Week 5: Additive Manufacturing
        • Workshop Amstelstation
        • Zine: 3D-printers & Being editors
        • Overall conclusion
      • Week 6: Untoolkit (Inputs)
        • Together w/ Loes
        • Zine: week 6
        • ExtraĀ“s
      • Week 7: Transforming
        • Zine: Social issues
        • extra's
      • Week 8: Untoolkit (Outputs)
        • Zine: Does being a 'maker' makes you a better civilian?
        • extraĀ“s: week 8
      • Week 9: Reflection
        • Zine:
        • extra's (week 9)
      • Week 10: Assessments
        • Zine:
      • Week 11
        • Makers skills & attitude
        • Design research skills
        • Collaborative learning
      • Week 12
        • Maker skills & attitude
        • Design research skills
        • Collaborative learning
      • Week 13
        • Scenario
        • Maker skills & attitude
        • Design research skills
        • Collaborative learning
      • Week 14
      • Week 15
        • Materialen lijst
        • Lijst met verschillende manier van connecten
        • Scenarios
        • Inspiratie voor vormen
        • Concrete voorbeelden tekenen
        • Samples / plan schrijven om te MAKEN!!
        • Kleuren inspiratie
      • Week 16
      • Week 18
        • Samples
        • The making of Samples
        • Inspiratie
        • Benodigdheden Woensdag 03/06/20
        • Inspiratie foto serie
        • Digitale tekeningen
      • Week 19
      • Week 20
    • DuÅ”anka
      • Week 1 - 8
        • 1 | Kick-Off
          • 2 | Electronics: Connecting Materials
            • Assignment 0 - Zine
            • Assignment 1 - Paper circuit
            • Assignment 2 - Soft speaker
          • Assignment 1
          • Assignment 2
        • 4 | Cutting Supersurfaces
          • Assignment 0 - Zine
          • Assignment 1 - Sample Book
        • 5 | Additive Manufacturing
          • Assignment 0 - Zine
          • Assignment 1 - Mold documentation
          • Assignment 2 - Molds
        • 6 | Untoolkit: Electronic Inputs
          • Assignment 0 - Zine
          • Assignment 1 - Antiprimadonna's
          • Assignment 2 - Working circuit
        • 7 | Transforming: Molding and Casting with Bioplastics
          • Assignment 0 - Zine
          • Assignment 1 - Intro
            • Bioplastics
            • Experiential toolkit
            • Material properties sheet
            • Future applications
            • Reflection
        • 8 | Untoolkit: Eelectronic Outputs
          • Assignment 0 - Zine
          • Assignment 1 - Working circuit
      • 11 | Projects Kick-Off
        • Trail of Evidence
      • 12 | First experiments
        • Trail of Evidence
        • Building the board
      • 13 | Project Work
        • Trail of Evidence
        • Building scenery
      • 14 | Reframing
        • Trail of Evidence
        • Game ideation
      • 15 | Making fake water
        • Trail of Evidence
      • 16 | Making a cherry blossom tree
        • Trail of Evidence
      • 17 | Expo plan & Clouds
        • Trail of Evidence
      • 18 | Research zine & Coffee soil
        • Research zine
      • 19 | Research zine 2.0
    • Kaz
      • 1 | Kick-Off
      • 2 | Electronics: Connecting Materials
        • Assignment 0 - Zine
        • Assignment 1 - Paper circuits
        • Assignment 2 - Building a speaker
      • 4 | Cutting Supersurfaces
      • 5 | Additive Manufacturing
      • 6 | Untoolkit: Electronic Inputs
      • 7 | Transforming: Molding and Casting with Bioplastics
      • 8 | Untoolkit: Electronic Outputs
      • 11 - 20 | Project: Face Mask Strap
        • 11 | Kick-Off / Pitch
        • Trail of Evidence
        • 15 | Midterm presentation
    • Kim
      • 1 - Introweek
        • Discussion notes
        • Try out zine - Week 1
      • 2 - Electronics: Connecting Materials
        • Zine - Week 2
      • Zine - Week 3
      • 4 - Cutting Supersurfaces
        • The making of: The Sample Book
        • Dense - Clear final sample book
        • Zine - Week 4
      • 5 - Additive Manufacturing
        • Understanding Fusion 360
        • Understanding Cura
        • Understanding the 3D Printer
        • Zine - Week 5
      • 6 - Coronaweek Untoolkit: Electronic Inputs
        • LDR LED connection with Arduino
        • Zine - Week 6
      • 7 - Coronaweek Transforming: Molding and Casting with Bioplastics
        • Material properties sheet + Experiential toolkit
        • Future Bioplastic concept
        • Zine - Week 7
      • 8 - Untoolkit: Electronic Outputs
        • Output swatch
        • Zine - Week 8
      • Project Page Biodegradable Packaging Bags
      • 11 - Project proposal week
        • Trial of evidence week 11
      • 12&13 - Project Bioplastic Consumables
        • Trial of evidence week 12&13
      • 14 - Reframing week
        • Trial of evidence week 14
      • 15 - Project work
        • Trial of evidence week 15
      • 16 - Reframing and expo prep
        • Trial of evidence week 16
        • 16 - The first test
      • Material Sample 1
      • 17 - Project work
        • 17 - Ironing a bioplastic bag
        • 17 - New method for sticking a bioplastic bag together
        • 17 - How to compost?
        • Trial of evidence week 17
      • 18 - Trial of Evidence
      • 19 - Trial Of Evidence
      • 20 - Trial Of Evidence
      • 21 - Final Expostion
    • Laura
      • Week 1: Kick off
      • Week 2: Electronics: connecting materials
      • Week 4: Cutting Supersurfaces
      • Week 5: Additive Manufacturing
      • Week 6: Untoolkit: Electronic inputs
      • Week 7: Transforming Molding and Casting with Bioplastics
      • Foam For Material Activists
        • How to protect?
        • To find a material
        • Foam
        • Trail of Evidence
        • Midterm presentations
    • Summer
      • Foto's
      • Midterm presentation
      • Project: Stop touching
        • Project Proposal
        • Inspirational projects
      • Cutting Supersurfaces
      • Additive Manufacturing
      • Molding and Casting with Bioplastics
        • Creating natural dyes
        • Created bioplastics
      • Electronic input
      • Electronic output
    • Thijs
      • Week 1 - Kickoff
      • Week 2 - Electronics : connecting materials
      • Week 2 - Workshop : debugging circuits
      • Week 2 - Making a speaker
      • Week 3 - Processes & Collaboration
      • Week 4 - Cutting supersurfaces
      • Week 4 - Zine editor
      • Week 5 - Additive manufacturing
      • Week 6 - Untoolkit: Electronic Inputs
      • Week 7 - Transforming: Molding and Casting with Bioplastics
        • Ma2E4 Toolkit
        • Future applications & reflection
      • Week 8 - Untoolkit : electronic outputs
      • Week 11 - Project kickoff
      • Week 12 - First experiments
      • Week 13 - Project work
      • Week 14 - Reframing & trail of evidence
        • Reframing : additional research
        • Shopping list
        • Testing bioplastic material
      • Week 15
      • Weeks 15 - 20
      • Expo prep
  • CLASS NOTES
    • Zine documentation (collaborative doc)
    • Discussions week 2-8
      • Week 02 - Connecting Materials
      • Week 04 - Cutting Supersurfaces
      • Week 05 - Additive Manufacturing
      • Week 06 - Untoolkit Electronics Inputs
      • Week 07 - Transforming Bioplastics
Powered by GitBook
On this page
  • Zine
  • Assignment
  • Seeeduino Lotus Cortex M0+
  • Breadboard
  • Digital sensor
  • Capacitive sensor
  • Conductive crystal
  • Copper wire
  • All iterations
  • Reflection
  • References
Export as PDF
  1. Coursework
  2. Kaz

6 | Untoolkit: Electronic Inputs

Previous5 | Additive ManufacturingNext7 | Transforming: Molding and Casting with Bioplastics

Last updated 5 years ago

Zine

Assignment

  • Create an on/off switch (tact, toggle, slide, tilt or other)

  • Also create an analog sensor (potentiometer, capacitive touch, other)

  • Show at least 3 iterations (drawings, prototypes) before making the final paper sensor in black cardboard

  • All the nodes should work as series, none can take visual supremacy

  • The sensors shown in class are the point of departure for the series. You can recreate the technical circuit but not the form

  • Program a Node MCU to read the values with the serial plotter

  • Change an LED’s brightness depending on switch & sensor values

Seeeduino Lotus Cortex M0+

It has 14 digital I/O (input/outputs) and 6 analog I/O. All pins with a ~ in front support PWM (Pulse-Width Modulation) output. Which means D3, D4, D5, D6, D8, D9, D10, D11, D12, D13, ten in total.

Breadboard

Digital sensor

A digital sensor has two states (on/off). When a circuit is closed it's on and when a circuit is open it's off. Because when the circuit is closed the current follows the circuit and when it's open the current is interrupted and can't go to the other side.

I've teamed up with Thijs for this week during the days we need to do the assignments at home. Thijs mainly focussed on building a digital sensor and I mainly focussed on building a capacitive sensor.

Capacitive sensor

In class, the day before the schools closed the doors because of the corona virus, we made a crystal that is conductive. Loes showed her own crystal sensor and I really wanted to make one myself. So at first I started to build a capacitive sensor with a conductive crystal, but later on I also tried different conductive materials. This setup works with every conductive object.

Conductive crystal

I just can't seem to get the setup to work. To my idea I've checked everything. I've checked if I've put USB behind every serial . I've checked if the I had connected the wires in the right way to setup the circuit. I've swapped the wires for other wires, to check if the wires are broken. After that I checked if the it works without the conductive crystal, so just with the paperclip. But the paperclip unfortunately doesn't work either, so I can't conclude that the crystal doesn't work.

The black wire looks like it isn't connected, but it is. It is connected to the same copper tape as the conductive crystal. The copper tape is one piece of tape that's also on a little bit on the back of the piece of paper. I made sure that its one piece, otherwise it wouldn't work.

//https://www.instructables.com/id/Capacitive-Sensing-for-Dummies/
//https://www.arduino.cc/en/Tutorial/Smoothing

#include <CapacitiveSensor.h>
// how to install libraries https://learn.sparkfun.com/tutorials/installing-an-arduino-library 
// download capsense lib here https://playground.arduino.cc/Main/CapacitiveSensor/

//send at pin 4, receive at pin 3, 1-10M ohm resistor between
CapacitiveSensor cs_3_4 = CapacitiveSensor(3, 4); // 1-10 megohm resistor between pins 4 & 3, pin 3 is sensor pin, add wire, foil

const int numReadings = 10;     // size of array/number of readings to keep track of (higher = slower)
int readings[numReadings];      // the readings from the analog input
int readIndex = 0;              // the index of the current reading
int total = 0;                  // the running total
int average = 0;                // the average
int brightness = 0;             // initialize delay time at 0
int ledPin = 11;
int newAverage = 0;             //store values after mapping

void setup() {

  // initialize serial communication with computer:
  SerialUSB.begin(9600);           //start serial communication via USB cable
  
  cs_3_4.set_CS_AutocaL_Millis(0xFFFFFFFF); // turn off autocalibrate on channel 1 - just as an example Serial.begin(9600);

  //initatialize readings array setting all values to 0
  for (int thisReading = 0; thisReading < numReadings; thisReading++) {
    readings[thisReading] = 0;
  }  
}

void loop() {

  // subtract the last reading:
  total = total - readings[readIndex];

  // read from the sensor:
  readings[readIndex] = cs_3_4.capacitiveSensor(30);

  // add the reading to the total:
  total = total + readings[readIndex];

  // advance to the next position in the array:
  readIndex = readIndex + 1;

  // if we're at the end of the array...wrap around to the beginning
  if (readIndex >= numReadings) {
    readIndex = 0;
  }

  // calculate the average:
  average = total / numReadings;

  // USE THIS TO FIND THE SENSOR RANGE (COMMENT OUT WHEN DONE)
  // send it to the computer as ASCII digits
  SerialUSB.println(average);  // if using Arduino serial >> e.g. 0 (touch), 70 (no touch)

//  // UNCOMMENT THIS TO MAP THE VALUES TO THE LED RANGE
//  // map the average value to the min and max we recorded above
//  newAverage = map(average, 70, 0, 0, 255);
//
//  //set brightness of LED to sensorValue (between 0-255)
//  analogWrite(ledPin, newAverage);  
//
//SerialUSB.print("Old Value = ");
//SerialUSB.print(average);
//SerialUSB.print("\t");   // add a tab between the numbers
//SerialUSB.print("New Value = ");
//SerialUSB.println(newAverage);

  delay(10); // arbitrary delay to limit data to serial port
}

When I was unwiring the circuit I still had my Serial Monitor open and it suddenly showed values. After looking at the wires one last time I saw I didn't make a mistake following the instructions. I recognized a mistake, the only thing I had to do was swap the wires connected in pin 3 and 4.

//send at pin 4, receive at pin 3, 1-10M ohm resistor between

The code works, just this comment should be changed to this:

//send at pin 3, receive at pin 4, 1-10M ohm resistor between

After this the setup worked (without the conductive crystal connected, just the paperclip) I could finally conclude that the crystal doesn't work.

Copper wire

At the show and tell I showed the sensor and told all the debugging I've done in the last week. After talking with Loes at the show and tell we came to the conclusion to solder the copper wire to the copper tape. So the copper wire and copper tape have better connection. In my design the copper tape makes the connection to my sensor, the copper wire. It's important to have no flaws there.

After soldering the copper wire to the copper tape I had a bit better results, but not as great as it needs to. I completely missed the part where I had to use 1 - 10M ohm resistance. The whole time building the multiple capacitive sensors I used 40k ohm. 40k ohm was the maximal amount of resistance I could create with the resistances I took with me before the school was closed, because of the corona virus.

All iterations

Reflection

While building further and further I realized it would've been smarter to pack more. I thought I packed a bit more than I needed, but that wasn't a great estimation. In the future I need to pack more than I think is more than enough, I am too economical. I needed a lot more resistance to get decent values from my capacitive sensor. The higher the resistance the higher the values.

References

More info about the Seeeduino Lotus Cortex M0+ at Seeedstudio's site:

http://wiki.seeedstudio.com/Seeeduino_Lotus_Cortex-M0-/
https://playground.arduino.cc/Main/CapacitiveSensor/
Serie of digital and analog sensors made by Loes Bogers
The yellow lines show which holes are connected to each other
Digital sensor made by Thijs - GIF made by Thijs
Pin ~3 as the send pin and pin ~4 as the receive pin
The capacitive sensor and LED connected to the microcontroller
Final sensor