LogoLogo
  • Documentation Pages
  • About Minor Makers Lab
  • Documentation templates
    • Recipe template
    • Label templates
    • Ingredient template
  • Projects
    • Project overview
      • Gelance Cushion - Andrei Motian
      • Landscapes for Warhammer - Dusanka Prvulovic
      • Bioplastic Filters: An Analogue Photoshop - DaniĆ«l van Kesteren
      • Hyperdisposables - Anoush Mazloumian
      • Project Stop Touching - Summer Danoe
      • Foam For Material Activists - Laura Velgersdijk
      • DateKleed - Duncan van Norden
      • One Size Hurts All - Kaz Bison
      • Biodegradable Packaging Bags - Kim Sinke
      • DIY Faceguards - Thijs Uffen
      • Bioplastics on a Rainbow Spectrum - Desiree van Dam
      • Beyond Humanity - Britt de Heer
  • Coursework
    • Britt
      • research zine text
      • Week 11
      • Week 12 / 13
      • Week 14
      • 1 ) Kick-Off
        • Grafische Werkplaats Amsterdam
        • Safetyzine
      • 2 ) Electronics: Connecting Materials
      • 4 ) Cutting Supersurfaces
        • Zine: Art Approach
        • Furry Sample Book
      • 5 ) Additive Manufacturing
      • 6 ) Untoolkit: Electronic Inputs
      • 7 ) Transforming: Moulding and Casting with Bioplastics
      • 8 ) Untoolkit: Electronic Outputs
    • Andrei
      • Week 1
        • GWA
        • Textielmuseum
        • Safetyzine
      • Week 2
        • Ohm's Law & circuits
        • Speaker on denim
      • Week 4
        • Inflatables 2D to 3D
        • Smooth to sharp with polypropylene
      • Week 5
        • Making a switch for the laser cutter in Fusion360
        • Designing and 3D printing molds
      • Week 6
        • Wearable switch for sound
        • Analog Sensor
      • Week 7
        • Home materials
        • Making bioplastics
        • Material properties
      • Week 8
        • Virtual Swatch
        • Processing
        • RGB LED
      • Project weeks 11 - ?
        • Week 11: Kick-off
          • Brainstorm Session
          • 5 min pitch
          • Trail of Evidence
          • Proposal
        • Week 12: Experimenting
          • Research workout materials
          • First Experiment
          • Trail of Evidence
        • Week 13: Project Work
          • Insights
          • Reframing session with Laura
          • Trail of Evidence
        • Week 14: Reframing
          • Reflective design method
          • Going bigger
          • Trail of Evidence
        • Week 15
          • Highlights photo's
          • Reframing, research & insights
          • Trail of Evidence
        • Week 16
          • Going even bigger
          • Trail of Evidence
        • Week 17
          • Trail of Evidence
        • Project
    • Anoush
      • Week 11-19
        • Week 11 | project kick-off
        • Week 14 | First experiments
        • Week 15 | Progress presentation
        • Last reframing session
        • Trail of Evidence
      • Week 1-8
        • Overall Reflection
        • Week 8 | Untoolkit - Electronic Outputs
        • Week 7 | Transforming bioplastics
        • Week 6 | Untoolkit - Electronic inputs
        • Week 5 | Additive Manufacturing
        • Week 4 | Cutting Supersurfaces
        • Week 3 | Reading Week
        • Week 2 | Electronics: Connecting Materials
        • Week 1 | Kick-off
    • DaniĆ«l
      • Week 20: Expo Week
      • Week 19: Project Week 9
      • Week 18: Project Week 8
      • Week 17: Project Week 7
      • Week 1: Kick-Off
      • Week 2: Electronics and Connecting Materials
        • Part I: The Basics and Recreating Circuits
        • Part II: The Making of the Speaker
        • Part III: Testing the speaker
      • Week 3: Reading Week
      • Week 4: Processes & Collaboration
        • Part I: exploring the words
        • Part II: experimenting with the laser cutter
      • Week 5: Critical Making 3D
        • Part I: Creating the injection mold
        • Part II: Creating the two-part mold
        • Part III: Printing the designs
      • Week 6: Electronics & Open Design
      • Week 7: Bioplastics
        • Material Properties Sheet
        • The Ma2E4 Toolkit
        • The Ma2E4 Toolkit (second bioplastic)
        • An application for the bioplastic
      • Week 8: Interfaces & Algorithmic Bias
      • Week 9: Documentation Week
      • Week 10: Assessments
      • Week 11: Project Kick-Off
      • Week 12: Recess
      • Week 13: Project Week 2
      • Week 14: Project Week 3
      • Week 15: Project Week 4
      • Week 16: Project Week 5
        • Presentation Preparation
    • Desiree
      • Summaries
      • Kick-off
      • Week 1 - Safety Zine
      • Week 2-3 Electromagnets
      • Week 4 - Cutting Supersurfaces
      • Week 5 - Additive Manufacturing
      • Week 6 - Untoolkit: Electronic Inputs
      • Week 7 - Transforming: Molding and Casting with Bioplastics
      • Week 8 - Untoolkit: Electronic Outputs
      • Trail of Evidence
      • Website
      • Material Archive
      • Week 11 - Choose a project
      • Week 12 - 13
      • Week 14
      • Week 15
      • Week 16
      • Week 17
      • Week 18
      • Week 19
    • Duncan
      • Week 1: Kick-Off
        • Masterclass Studio Overvelde
        • Workshop letterpress
        • Textielmuseum Tilburg
        • Meet the Makers - introduce yourself
        • Safetyzine
        • extraĀ“s
      • Week 2: Electronics: Connecting Materials
        • Zine: Kits & Open sources
      • Week 3: Reading week
      • Week 4: Cutting Supersurfaces
        • Zine:
      • Week 5: Additive Manufacturing
        • Workshop Amstelstation
        • Zine: 3D-printers & Being editors
        • Overall conclusion
      • Week 6: Untoolkit (Inputs)
        • Together w/ Loes
        • Zine: week 6
        • ExtraĀ“s
      • Week 7: Transforming
        • Zine: Social issues
        • extra's
      • Week 8: Untoolkit (Outputs)
        • Zine: Does being a 'maker' makes you a better civilian?
        • extraĀ“s: week 8
      • Week 9: Reflection
        • Zine:
        • extra's (week 9)
      • Week 10: Assessments
        • Zine:
      • Week 11
        • Makers skills & attitude
        • Design research skills
        • Collaborative learning
      • Week 12
        • Maker skills & attitude
        • Design research skills
        • Collaborative learning
      • Week 13
        • Scenario
        • Maker skills & attitude
        • Design research skills
        • Collaborative learning
      • Week 14
      • Week 15
        • Materialen lijst
        • Lijst met verschillende manier van connecten
        • Scenarios
        • Inspiratie voor vormen
        • Concrete voorbeelden tekenen
        • Samples / plan schrijven om te MAKEN!!
        • Kleuren inspiratie
      • Week 16
      • Week 18
        • Samples
        • The making of Samples
        • Inspiratie
        • Benodigdheden Woensdag 03/06/20
        • Inspiratie foto serie
        • Digitale tekeningen
      • Week 19
      • Week 20
    • DuÅ”anka
      • Week 1 - 8
        • 1 | Kick-Off
          • 2 | Electronics: Connecting Materials
            • Assignment 0 - Zine
            • Assignment 1 - Paper circuit
            • Assignment 2 - Soft speaker
          • Assignment 1
          • Assignment 2
        • 4 | Cutting Supersurfaces
          • Assignment 0 - Zine
          • Assignment 1 - Sample Book
        • 5 | Additive Manufacturing
          • Assignment 0 - Zine
          • Assignment 1 - Mold documentation
          • Assignment 2 - Molds
        • 6 | Untoolkit: Electronic Inputs
          • Assignment 0 - Zine
          • Assignment 1 - Antiprimadonna's
          • Assignment 2 - Working circuit
        • 7 | Transforming: Molding and Casting with Bioplastics
          • Assignment 0 - Zine
          • Assignment 1 - Intro
            • Bioplastics
            • Experiential toolkit
            • Material properties sheet
            • Future applications
            • Reflection
        • 8 | Untoolkit: Eelectronic Outputs
          • Assignment 0 - Zine
          • Assignment 1 - Working circuit
      • 11 | Projects Kick-Off
        • Trail of Evidence
      • 12 | First experiments
        • Trail of Evidence
        • Building the board
      • 13 | Project Work
        • Trail of Evidence
        • Building scenery
      • 14 | Reframing
        • Trail of Evidence
        • Game ideation
      • 15 | Making fake water
        • Trail of Evidence
      • 16 | Making a cherry blossom tree
        • Trail of Evidence
      • 17 | Expo plan & Clouds
        • Trail of Evidence
      • 18 | Research zine & Coffee soil
        • Research zine
      • 19 | Research zine 2.0
    • Kaz
      • 1 | Kick-Off
      • 2 | Electronics: Connecting Materials
        • Assignment 0 - Zine
        • Assignment 1 - Paper circuits
        • Assignment 2 - Building a speaker
      • 4 | Cutting Supersurfaces
      • 5 | Additive Manufacturing
      • 6 | Untoolkit: Electronic Inputs
      • 7 | Transforming: Molding and Casting with Bioplastics
      • 8 | Untoolkit: Electronic Outputs
      • 11 - 20 | Project: Face Mask Strap
        • 11 | Kick-Off / Pitch
        • Trail of Evidence
        • 15 | Midterm presentation
    • Kim
      • 1 - Introweek
        • Discussion notes
        • Try out zine - Week 1
      • 2 - Electronics: Connecting Materials
        • Zine - Week 2
      • Zine - Week 3
      • 4 - Cutting Supersurfaces
        • The making of: The Sample Book
        • Dense - Clear final sample book
        • Zine - Week 4
      • 5 - Additive Manufacturing
        • Understanding Fusion 360
        • Understanding Cura
        • Understanding the 3D Printer
        • Zine - Week 5
      • 6 - Coronaweek Untoolkit: Electronic Inputs
        • LDR LED connection with Arduino
        • Zine - Week 6
      • 7 - Coronaweek Transforming: Molding and Casting with Bioplastics
        • Material properties sheet + Experiential toolkit
        • Future Bioplastic concept
        • Zine - Week 7
      • 8 - Untoolkit: Electronic Outputs
        • Output swatch
        • Zine - Week 8
      • Project Page Biodegradable Packaging Bags
      • 11 - Project proposal week
        • Trial of evidence week 11
      • 12&13 - Project Bioplastic Consumables
        • Trial of evidence week 12&13
      • 14 - Reframing week
        • Trial of evidence week 14
      • 15 - Project work
        • Trial of evidence week 15
      • 16 - Reframing and expo prep
        • Trial of evidence week 16
        • 16 - The first test
      • Material Sample 1
      • 17 - Project work
        • 17 - Ironing a bioplastic bag
        • 17 - New method for sticking a bioplastic bag together
        • 17 - How to compost?
        • Trial of evidence week 17
      • 18 - Trial of Evidence
      • 19 - Trial Of Evidence
      • 20 - Trial Of Evidence
      • 21 - Final Expostion
    • Laura
      • Week 1: Kick off
      • Week 2: Electronics: connecting materials
      • Week 4: Cutting Supersurfaces
      • Week 5: Additive Manufacturing
      • Week 6: Untoolkit: Electronic inputs
      • Week 7: Transforming Molding and Casting with Bioplastics
      • Foam For Material Activists
        • How to protect?
        • To find a material
        • Foam
        • Trail of Evidence
        • Midterm presentations
    • Summer
      • Foto's
      • Midterm presentation
      • Project: Stop touching
        • Project Proposal
        • Inspirational projects
      • Cutting Supersurfaces
      • Additive Manufacturing
      • Molding and Casting with Bioplastics
        • Creating natural dyes
        • Created bioplastics
      • Electronic input
      • Electronic output
    • Thijs
      • Week 1 - Kickoff
      • Week 2 - Electronics : connecting materials
      • Week 2 - Workshop : debugging circuits
      • Week 2 - Making a speaker
      • Week 3 - Processes & Collaboration
      • Week 4 - Cutting supersurfaces
      • Week 4 - Zine editor
      • Week 5 - Additive manufacturing
      • Week 6 - Untoolkit: Electronic Inputs
      • Week 7 - Transforming: Molding and Casting with Bioplastics
        • Ma2E4 Toolkit
        • Future applications & reflection
      • Week 8 - Untoolkit : electronic outputs
      • Week 11 - Project kickoff
      • Week 12 - First experiments
      • Week 13 - Project work
      • Week 14 - Reframing & trail of evidence
        • Reframing : additional research
        • Shopping list
        • Testing bioplastic material
      • Week 15
      • Weeks 15 - 20
      • Expo prep
  • CLASS NOTES
    • Zine documentation (collaborative doc)
    • Discussions week 2-8
      • Week 02 - Connecting Materials
      • Week 04 - Cutting Supersurfaces
      • Week 05 - Additive Manufacturing
      • Week 06 - Untoolkit Electronics Inputs
      • Week 07 - Transforming Bioplastics
Powered by GitBook
On this page
  • Stop Touching
  • Accessibility
  • Decentralization of production by tutorials
  • Mass production and distribution
  • Decentralization of production by kits
  • Inspiration
Export as PDF
  1. Coursework
  2. Summer
  3. Project: Stop touching

Project Proposal

PreviousProject: Stop touchingNextInspirational projects

Last updated 5 years ago

Stop Touching

A step towards fighting the virus.

We have two options to fight this method of contamination. We can either disinfect the surfaces that we touch after every use, or avoid to touch them all-together. Disinfection can be hard to achieve for frequently used objects. Therefore refraining from touching these objects is the safest way to prevent contamination.

While public places like schools and stores are slowly opening their doors again in Europe, we have to be cautious about how we can limit ways for the virus to spread. We have to suppress our natural tendency to touch the objects that we usually touch. Many everyday objects require our hands to operate them. Doorhandles, water taps, soap dispensers, buttons and handrails are all things that are not only touched often, but by many people. Instead of franticly trying to clean these objects continuously, we could try to come up with solutions to refrain from touching these objects with our hands completely.

We could start with doorhandles. Try and imagine the amount of people that touch a door handle in a public building. Doors have existed since the beginning of human history, and we are used to operating them with our hands. We could come up with either a partially electronic or fully mechanical system system that is universal, and fits on every door. It might be hard to use something as self-evident as a door in a different way than we are used to, but we need to stop contamination on frequently used surfaces. Automatically opening doors are already a thing, but they have to be installed by a professional and are very expensive. We want a simple modification that can be applied to every existing door.

We need to stop touching door handles. It may not seem like much, but every object that we don't touch is one less way to spread the virus. The ultimate goal is to come up with a product that gives us the ability to open a door without touching it. The solution has to be affordable, universal and accessible.

Accessibility

The hardest aspect of the solution will be accessibility. We have to keep in mind that we cannot produce and provide products the way that we are used to in current circumstances. There are also countless doors in public buildings, so the product would have to be reproduced often. There are three possible methods to bring our (yet to be designed) solution to the people.

Decentralization of production by tutorials

This method is based on the "teach a man to fish and you feed him for a lifetime" philosophy. There are many things we don't have due to the lockdown, but one thing we now do have is time. If we create clear and simple instructions people can make their own door modifications for at home or at work. If we end up using electronics, we can provide people with the circuits and programming to make our product. For the mechanical parts, we can use tools that many people have at home, like printers, and create templates for our product so they can be made manually. Since stores are open in the Netherlands, the consumers have the same access to materials as I do. The lack of a fabrication lab would pose no problem if we choose this method. The online design is not fixed, can be modified or improved at any time, by anyone.

Mass production and distribution

Materials are still abundantly available in the Netherlands, since the home improvement stores are open, but not every country has this luxury, and not everyone is able to go outside. If we design this product in a way that we can reproduce at it high speed, we can send people these ready-to-use products via mail. This will require no skill or time from the user. This way the level accessibility of the product depends on the availability of postal services, or independent delivery services.

What might cause a problem here, is that as a developer and manufacturer I have limited resources to create the tools for mass reproduction. I have no fab lab and it might be difficult to create my own tools. I do have access to the home improvement store and there are many things that I can do at home. In the case I do manage to create a tool to make these products fast and easily, I could share the knowledge to create this tool online, which gives other people the ability to create more products.

Decentralization of production by kits

To combine the two previous methods, we could consider taking the IKEA approach. Partially assembling the products at home saves the manufacturer time, and possibly makes the packaging more compact. This means we can produce and distribute many kits. Remember that we would want this device on every door, so we need quite a lot of them. Creating building sets can keep the costs to a minimal, and on account of the lockdown we can assume that people have some time left over to assemble the products. This also gives more opportunities for consumers to hack our kit, rather than having a ready-made product.

This method however most likely needs classic fabrication machines that I personally might not have access to. I however am able to create a prototype to test the concept, and create files so people with access can produce these kits.

Inspiration

Please take a look at the projects that inspired me!

The COVID-19 virus spreads through the air, and therefore we maintain appropriate distance between each other, and some people wear masks. However, there is also another way the virus can spread. What makes the COVID-19 virus especially dangerous, is that the virus can survive on surfaces for up to 72 hours (). We can infect ourselves and others if we touch our faces or mouths with our contaminated hands.

Summer Danoe 2020 ()

source
personal documentation
Inspirational projects